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Consideration has been given to the theory of oscillating flows in a pipe for the case where turbulence devel-
ops monotonically, reaching the pipe axis within a certain period of time after the beginning of acceleration.
A mathematical model describing resonance oscillations of this type in an open pipe and consistent with ex-
periment has been constructed.

It is common knowledge that resonance oscillations are set up in a pipe at one end of which there is a har-
monically oscillating piston and the other end of which communicates with the ambient medium. These oscillations are
accompanied by the formation of a pulsating jet, turbulization of the flow, and a number of other nonlinear effects [1–
4]. Interest in such systems is maintained owing to their wide acceptance in technology.

Nonresonance oscillating turbulent flows have been investigated in a number of works [5–8]. In some works
[5, 6], the logarithmic velocity profile is observed throughout the oscillation period and it occupies the entire cross
section of the pipe. At any instant, hydraulic resistance obeys the Blasius law. In others [7, 8], it has been found that
the thickness of the logarithmic layer monotonically increases with time until the layer occupies the entire cross sec-
tion of the pipe. Until the logarithmic layer reaches the channel axis, the velocity maximum is observed at a certain
distance from the wall and it is much larger than the velocity on the tube axis at this instant of time. According to
[9], the behavior of the flows is determined by the speed of growth of the logarithmic layer. If the turbulence reaches
the pipe at the early stages of acceleration, one observes flows of the type of [5, 6]; if, conversely, the turbulence
propagates slowly, the cases of [7, 8] are realized.

To calculate resonance oscillations one must prescribe the dependences of the tangential stress on the wall on
the velocity oscillations and of the heat-flux density on the pressure oscillations, which are nonlinear in turbulent
flows. An approach based on linearization of the above quantities by one method or another has been proposed in [10]
with the aim of overcoming this circumstance. In particular, one can prescribe in advance the dependence of the ve-
locity oscillations on the axial coordinate and average it over the pipe length.

Resonance oscillations in the case where turbulence reaches the pipe axis at the early stages of acceleration
and a logarithmic velocity profile (flows of the type of [5, 6]) is rapidly established on the entire cross section of the
pipe have been considered in one of the first isentropic models, where the tangential stress on the wall was assumed
to obey the Blasius law [11]. The linearized expression of tangential stress was substituted into the acoustic equations.

Resonance oscillations in the regime of the so-called weakly developed turbulence where the profile of the
amplitude of velocity oscillations is assumed to be uniform everywhere except for a thin logarithmic layer in the vi-
cinity of the wall (the logarithmic layer develops so slowly that the turbulence has no time to propagate to the pipe
axis) have been considered in [12].

In the present work, we seek to construct a model of resonance oscillations in the case of slow propagation
of turbulence; this case corresponds to flows of the type of [7, 8].

Resonance oscillations in a narrow cylindrical pipe of length L and radius R (R << L) at one end of which
there is a harmonically oscillating piston with a small displacement amplitude l0 << L and the other end of which com-
municates with the ambient medium are characterized by the set of dimensionless parameters [12]
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V

2

ων
 . (1)

In oscillations at the fundamental frequency, the condition l0 << L is equivalent to Mpstn << 1. Of principal
practical interest is the case H >> 1. Let Sh << 1; then we have ε << 1 for R ⁄ L << 1, i.e., the problem can be solved
by the perturbation method. Finally, the flow will be turbulent if Re ≥ 1.6⋅105 [7].

The equations of the first (acoustic) approximation can be represented in the form

ρ0 
∂u1s

∂t
 + 

∂p1

∂x
 = − 

2τ1

R
 ,

∂p1

∂t
 + ρ0c0

2
 
∂u1s

∂x
 = 

2 (κ − 1) q1

R
 . (2)

The relationship between the amplitude of tangential stress on the wall and the amplitude of velocity oscilla-
tions in the case of a uniform velocity distribution over the pipe length is as follows [7]:

τ1 = 
1
2

 ρ0fwu1m
2

 . (3)

Representation of experimental data [7] in analytical form leads to the expression

fw = 0.066 (ων)0.2
 u1m

−0.4
 . (4)

In resonance oscillations, u1m is a function of the axial coordinate; therefore, dependence (3) must be linear-
ized. For this purpose we write τ1 in the form

τ1 (x, t) = ρ0β0u1 (x, t + ϕ) , (5)

where

β0 = 
1
L

 ∫ 
0

L

fwu1m (x) dx . (6)

We take the leading, term of the amplitude of velocity oscillations to be expressed in the form u1m(x) = V sin k0x,
where k0 = ω ⁄ c0. Then with account for k0L C π ⁄ 2 we obtain

β0 = 0.024 (ων)0.2
 V

0.6
 . (7)

Experience shows [7] that tangential stress on he wall leads the velocity oscillations by the angle ϕ0; conse-
quently, (5) can be represented as

τ1 (x, t) = ρ0β0u1 (x, t) exp (iϕ0) (8)

or, with account for u1s(x, t) = Bu1(x, t) exp (iϕ1), in the form

τ1 = ρ0βu1s exp (iϕ) ,   β = 
β0

B
 ,   ϕ = ϕ0 − ϕ1 . (9)

For evaluation of q1 we consider the relation

q1

τ1
 = − 

(λ + λt)
(µ + µt)

 
(∂T1

 ⁄ ∂r)r=R

(∂u1
 ⁄ ∂r)r=R

 . (10)
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Let Pr = 1; then λ = cpµ and λt = cpµt and the dimensionless fields of temperatures and velocities are similar, i.e.,





∂θ1

∂ξ


 ξ=1

 = 




∂u
_

1

∂ξ


 ξ=1

 , (11)

where θ1 = T1
 ⁄ T1m, u

_
1 = u1

 ⁄ u1m, and ξ = r/R.
In the flow core, we have p1 = ρ0cpT1m; then, with account for (11), from (10) we easily obtain

q1 = − βTp1 ,   βT = β0 exp (iϕ0) . (12)
We substitute (9) and (12) into (2) and pass to dimensionless variables

1
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where

a1
∗
 = (2β0

 ⁄ BRc0) exp (iϕ) ;   a2
∗
 = (2 (κ − 1) β0

 ⁄ Rc0) exp (iϕ0) ;

p
_
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 ⁄ ρ0c0

2
 ;   u

_
1s = u1s

 ⁄ c0 .

We set p
_

1(x, t) = p
_

1(x) exp i(ωt + ψ1) and u
_

1s(x, t) = u
_

1s(x) exp i(ωt + ψ1) in (13) and eliminate one variable, for ex-
ample, u

_
1s(x). Then for the pressure-oscillation amplitude we have
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If, as the solution of (14), we select

p
_

1 (x) = r1 cos z1 , (15)

where z1 = k1x + α1 + iβ1, after substituting it into (14) we obtain the dispersion relation

k1
2
 = 





iω
c0

 + a1
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
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 . (16)

Substituting the quantities a1
∗  and a2

∗  into (16) and assuming that a1
∗  ⁄ k0 << 1 and a2

∗  ⁄ k0 << 1, where k0 = ω ⁄ c0, with a
sufficient degree of accuracy, we have

k1 = k0 + b1 + ib2 , (17a)

b1 = β0 
sin ϕ + (κ − 1) B sin ϕ0

BRc0
 ,   b2 = β0 

cos ϕ + (κ − 1) B cos ϕ0

BRc0
 . (17b)

The amplitude of velocity oscillations u
_

1s(x) is determined from the formula

u
_

1s (x) = − 
ik1r1

k0 − ia1
∗
 sin z1 , (18)

134



then the solution of system (13) can be written in the form

p
_

1 (x, t) = r1 cos z1 exp i (ωt + ψ1) ,

u
_

1s (x, t) = − ir1B sin z1 exp i (ωt + ψ1 + ϕ1) , (19)

where

B =  k1
 ⁄ (k0 − ia1

∗ ) ;  ϕ1 = arg (k1
 ⁄ (k0 − ia1

∗ )) .

With a sufficient degree of accuracy we have

B F 1 ,   ϕ1 F 0 , (20)

i.e., the velocity average over the cross section differs little from its maximum value u
_

1s F u
_

1.
With account for (20) expressions (17b) take the form

b1 = 
β0κ sin ϕ0

Rc0
 ,   b2 = 

β0κ cos ϕ0
BRc0

 . (21)

We consider the boundary conditions. At the end closed by the piston, we prescribe the piston velocity

u
_

1 (0, t) = Mpstn exp i (ωt) . (22)

The procedure of calculation of the boundary condition at the open end, which is based on the idea of the jet
character of outflow and spherical flow into the sink in the outlet cross section of the pipe, has been given in [12] for
the case of harmonic velocity oscillations. We assume that at a certain distance from the outlet cross section inside the
pipe the velocity varies according to the law

u
_

1 (L, t) = v
_
 sin (ωt + ψ1) ,   v

_
 = V ⁄ c0 . (23)

Then the oscillations at the fundamental frequency can be written in the form

p
_

1 (L, t) = mv
_2

 sin (ωt + ψ1) ,

m = 0.5 

2 (0.5m0 + a0) (0.5 + a1) − (0.5 + a1) a2 + a2a3 − a3a4 + a4a5




 , (24)

where ai are the coefficients of Fourier-series expansion of the jet velocity at the distance x F 3R from the outlet cross
section of the pipe [12] and m0 is the coefficient determined from the equation

3m0π − 2 (m0 arcsin m0 + sin arccos m0) = 0 . (25)

Substituting (19) into (22) and (24), for determination of r1, ψ1, α1, and β1 we obtain the system of equations

r1 sin α1 cosh β1 = Mpstn sin ψ1 ,   r1 cos α1 sinh β1 = Mpstn cos ψ1 ,

cos z cosh w = mr1 √ sin2 z +  sinh2 w  cos z sinh w ;

sin z  sinh w = mr1 √ sin2 z +  sinh2 w  sin z cosh w , (26)

where z = (k0 + b1)L + α1 and w = β1 − b2L.
System (26) for r1 << 1, sinh w D r1, and cosh w C 1 is easily solved in the following manner:
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α1 = 
π
2

 − (k0 + b1) L ,   β1 = mr1 + b2L ,   ψ1 = arctan (tan α1 cot β1) ,

r1 √cos2 (k0 + b1) L + (mr1 + b2L)2 sin2 (k0 + b1) L  = Mpstn , (27)

where b1 and b2 also depend on r1.
At sharp resonance (α1 = 0), we have

(k0 + b1) L = 
π
2

 ,   β1 = mr1 + b2L ,

r1 (mr1 + b2L) = Mpstn ,   ψ1 = 0 . (28)

It is easy to show that in the case where the turbulent boundary layer reaches the axis at the early stages of
acceleration and the coefficient of friction is determined by the Blasius law, β0 is independent of the oscillation fre-
quency. In our case β0 D ω0.2. The dependence of β0 on ν and V is nearly the same in both cases.

The points in Fig. 1 show the experimental data [13] obtained in a pipe with a tapered reducer for two values
of m1 = dpstn

 ⁄ dpp when l0 = 0.04575 m (the solid curves denote results of the calculation from formula (27)). The
effective amplitude of displacement of the piston lef = m1

2l0 has been employed for theoretical calculations [14]. The
dashed curve in the figure is calculation from the formula r1 = 1.9084/L for the pipe with m1 = 2.2727. Satisfactory
agreement of the data is seen. Noteworthy is a monotone decrease in the dimensionless amplitude of oscillations with
increase in the pipe length. The dependence of r1 on the pipe length, calculated from (27) (solid curve for m1 =
2.2727), is quite similar to the inversely proportional dependence (dashed curve), particularly for longer pipes, as indi-
cated by Repin et al. [13].

Thus, the model proposed is suitable for description of resonance oscillations in turbulent flows in the cases
where turbulence reached the pipe axis within a certain time after the beginning of acceleration.

NOTATION

ai, coefficients of the Fourier series; a1
∗  and a2

∗ , coefficients of linearization of the tangential stress on the wall
and of the heat flux, m−1; B, dimensionless parameter allowing for the displacement of the flow by the boundary
layer; b1 and b2, dispersion and absorption coefficients determined by turbulent friction and heat conduction, m−1; c0,
velocity of sound in the unperturbed gas, m/sec; cp, specific heat at constant pressure, J/(kg⋅K); dpstn, piston diameter,
m; dpp, pipe diameter, m; fw, coefficient of friction on the wall; H, frequency parameter; k0, wave number of the ideal
gas, m−1; k1, resultant wave number in the turbulent flow, m−1; L, pipe length, m; l0, amplitude of displacement of the
piston, m; lef, effective amplitude of displacement of the piston, m; m, factor of proportionality between velocity and
pressure oscillations at the open end of the pipe; m0, proportionality factor obtained from the law of conservation of

Fig. 1. Dimensionless oscillation amplitudes vs. pipe length: 1) m1 = 2.2727
and 2) 1.1818. L, m.
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mass at the open end of the pipe; m1, coefficient allowing for the geometric parameters of the tapered reducer; Mpstn,
Mach number for the piston; p, pressure, Pa; Pr, Prandtl number; q, heat flux, W/m2; r, radial coordinate, m; R, pipe
radius, m; r1, modulus of the dimensionless oscillation amplitude; Re, Reynolds number; Sh, Strouhal number; t, time,
sec; T, temperature, K; u, velocity, m/sec; u1s, effective velocity, m/sec; v

_
, dimensionless amplitude of velocity oscilla-

tions in the vicinity of the open end of the pipe; V, amplitude of velocity oscillations in the vicinity of the open end
of the pipe, m/sec; x, axial coordinate, m; z1, argument of the distribution function of the pressure and velocity ampli-
tude over the pipe length; z and w, real and imaginary parts of the function z1 at the open end of the pipe; α1 and
β1, integration constants; β0, coefficient of linearization of the tangential stress over the pipe length, m/sec; βt, coeffi-
cient allowing for the relationship between the pressure and heat-flux oscillations, m/sec; ε, nonlinearity parameter; θ,
dimensionless temperature; κ, Karman constant; λ, thermal conductivity, W/(m⋅K); λt, turbulent thermal conductivity,
W/(m⋅K); µ, coefficient of dynamic viscosity, kg/(m⋅sec); µt, coefficient of turbulent viscosity, kg/(m⋅sec); ν, coeffi-
cient of kinematic viscosity, m2/sec; ξ, dimensionless radial coordinate; ρ0, density of the unperturbed gas, kg/m3; τ1,
tangential stress on the wall, N/m2; ϕ0, phase shift between the tangential stress on the wall and the velocity oscilla-
tions; ϕ1, principal value of the argument of the function allowing for the displacement of the flow by the boundary
layer; ϕ, difference of the phases ϕ0 and ϕ1; ψ1, principal value of the argument of the dimensionless amplitude of
oscillations; ω, cyclic frequency, 1/sec. Subscripts and superscripts: 1, first (acoustic) approximation; 

_
, dimensionless

quantity; m, oscillation amplitude; s, averaging of the quantity over the pipe cross section; t, turbulent; pstn, piston; w,
wall; ef, effective; pp, pipe.
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